9.2 KiB
AI大模型Ollama结合Open-webui
作者:行癫(盗版必究)
一:认识 Ollama
1.什么是Ollama
Ollama是一个开源的 LLM(大型语言模型)服务工具,用于简化在本地运行大语言模型,降低使用大语言模型的门槛,使得大模型的开发者、研究人员和爱好者能够在本地环境快速实验、管理和部署最新大语言模型
2.官方网址
官方地址:https://ollama.com/
Ollama目前支持以下大语言模型:https://ollama.com/library
Ollama下载地址:https://ollama.com/download/ollama-linux-amd64.tgz
3.注意事项
qwen、qwq、Llama等都是大语言模型
Ollama是大语言模型(不限于Llama
模型)便捷的管理和运维工具
二:安装部署Ollama
1.官方脚本安装
注意:服务器需要可以访问github等外网
curl -fsSL https://ollama.com/install.sh | sh
2.二进制安装
参考网址:https://github.com/ollama/ollama/blob/main/docs/linux.md
获取二进制安装包
curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
解压及安装
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
创建管理用户和组
sudo useradd -r -s /bin/false -U -m -d /usr/share/ollama ollama
sudo usermod -a -G ollama $(whoami)
配置启动管理文件/etc/systemd/system/ollama.service
[Unit]
Description=Ollama Service
After=network-online.target
[Service]
ExecStart=/usr/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=$PATH"
[Install]
WantedBy=default.target
启动
sudo systemctl daemon-reload
sudo systemctl enable ollama
注意:如果手动启动直接执行以下命令
ollama serve
3.容器安装
CPU Only:
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
GPU Install:
参考网址:https://github.com/ollama/ollama/blob/main/docs/docker.md
4.Kubernetes安装
apiVersion: apps/v1
kind: Deployment
metadata:
annotations: {}
labels:
k8s.kuboard.cn/layer: web
k8s.kuboard.cn/name: ollama
name: ollama
namespace: xingdian-ai
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 10
selector:
matchLabels:
k8s.kuboard.cn/layer: web
k8s.kuboard.cn/name: ollama
strategy:
rollingUpdate:
maxSurge: 25%
maxUnavailable: 25%
type: RollingUpdate
template:
metadata:
creationTimestamp: null
labels:
k8s.kuboard.cn/layer: web
k8s.kuboard.cn/name: ollama
spec:
containers:
- image: >-
swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/ollama/ollama:latest
imagePullPolicy: IfNotPresent
name: ollama
ports:
- containerPort: 11434
protocol: TCP
volumeMounts:
- mountPath: /root/.ollama
name: volume-28ipz
restartPolicy: Always
volumes:
- name: volume-28ipz
nfs:
path: /data/ollama
server: 10.9.12.250
---
apiVersion: v1
kind: Service
metadata:
annotations: {}
labels:
k8s.kuboard.cn/layer: web
k8s.kuboard.cn/name: ollama
name: ollama
namespace: xingdian-ai
spec:
clusterIP: 10.109.25.34
clusterIPs:
- 10.109.25.34
internalTrafficPolicy: Cluster
ipFamilies:
- IPv4
ipFamilyPolicy: SingleStack
ports:
- name: 3scykr
port: 11434
protocol: TCP
targetPort: 11434
selector:
k8s.kuboard.cn/layer: web
k8s.kuboard.cn/name: ollama
sessionAffinity: None
type: ClusterIP
5.基本使用
[root@xingdian-ai ~]# ollama -h
Large language model runner
Usage:
ollama [flags]
ollama [command]
Available Commands:
serve Start ollama
create Create a model from a Modelfile
show Show information for a model
run Run a model
stop Stop a running model
pull Pull a model from a registry
push Push a model to a registry
list List models
ps List running models
cp Copy a model
rm Remove a model
help Help about any command
Flags:
-h, --help help for ollama
-v, --version Show version information
Use "ollama [command] --help" for more information about a command.
获取大语言模型
[root@xingdian-ai ~]# ollama pull gemma2:2b
注意:gemma是谷歌的大语言模型
查看已有的发语言模型
[root@xingdian-ai ~]# ollama list
删除大语言模型
[root@xingdian-ai ~]# ollama list qwen2:7b
运行大语言模型
[root@xingdian-ai ~]# ollama run qwen:0.5b
三:认识 Open-webui
1.什么是Open-webui
Open-WebUI 常用于给用户提供一个图形界面,通过它,用户可以方便地与机器学习模型进行交互
2.官方地址
官方地址:https://github.com/open-webui/open-webui
四:安装部署和使用
1.容器安装方式
docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=https://example.com -e HF_ENDPOINT=https://hf-mirror.com -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
国内镜像地址:swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui:main
OLLAMA_BASE_URL:指定Ollama地址
由于国内网络无法直接访问 huggingface , 我们需要更改为国内能访问的域名 hf-mirror.com
报错:
OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like sentence-transformers/all-MiniLM-L6-v2 is not the path to a directory containing a file named config.json.
Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'.
No WEBUI_SECRET_KEY provided
解决方法: 使用镜像站 -e HF_ENDPOINT=https://hf-mirror.com
2.kubernetes方式
---
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
k8s.kuboard.cn/layer: svc
k8s.kuboard.cn/name: ai
name: ai
namespace: xingdian-ai
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 10
selector:
matchLabels:
k8s.kuboard.cn/layer: svc
k8s.kuboard.cn/name: ai
strategy:
rollingUpdate:
maxSurge: 25%
maxUnavailable: 25%
type: RollingUpdate
template:
metadata:
labels:
k8s.kuboard.cn/layer: svc
k8s.kuboard.cn/name: ai
spec:
containers:
- env:
- name: OLLAMA_BASE_URL
value: 'http://10.9.12.10:11434'
- name: HF_ENDPOINT
value: 'https://hf-mirror.com'
image: '10.9.12.201/ollama/open-webui:main'
imagePullPolicy: Always
name: ai
ports:
- containerPort: 8080
protocol: TCP
resources: {}
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
restartPolicy: Always
terminationGracePeriodSeconds: 30
---
apiVersion: v1
kind: Service
metadata:
annotations: {}
labels:
k8s.kuboard.cn/layer: svc
k8s.kuboard.cn/name: ai
name: ai
namespace: xingdian-ai
spec:
clusterIP: 10.99.5.168
clusterIPs:
- 10.99.5.168
internalTrafficPolicy: Cluster
ipFamilies:
- IPv4
ipFamilyPolicy: SingleStack
ports:
- name: cnr2rn
port: 8080
protocol: TCP
targetPort: 8080
selector:
k8s.kuboard.cn/layer: svc
k8s.kuboard.cn/name: ai
sessionAffinity: None
type: ClusterIP
3.使用kong ingress 进行引流
创建upstream svc地址为:xingdian-ai.ai.svc:8080
创建services
创建route
配置DNS解析
4.浏览器访问
事先在ollama上获取大模型,我们一qwen:0.5b为例,其他的大模型占用资源较多