390 lines
9.6 KiB
Markdown
390 lines
9.6 KiB
Markdown
<h1><center>AI大模型Ollama结合Open-webui</center></h1>
|
||
|
||
**作者:行癫(盗版必究)**
|
||
|
||
------
|
||
|
||
## 一:认识 Ollama
|
||
|
||
#### 1.什么是Ollama
|
||
|
||

|
||
|
||
Ollama是一个开源的 LLM(大型语言模型)服务工具,用于简化在本地运行大语言模型,降低使用大语言模型的门槛,使得大模型的开发者、研究人员和爱好者能够在本地环境快速实验、管理和部署最新大语言模型
|
||
|
||
#### 2.官方网址
|
||
|
||
官方地址:https://ollama.com/
|
||
|
||

|
||
|
||
Ollama目前支持以下大语言模型:https://ollama.com/library
|
||
|
||

|
||
|
||
Ollama下载地址:https://ollama.com/download/ollama-linux-amd64.tgz
|
||
|
||
#### 3.注意事项
|
||
|
||
qwen、qwq、Llama等都是大语言模型
|
||
|
||
Ollama是大语言模型(不限于`Llama`模型)便捷的管理和运维工具
|
||
|
||
## 二:安装部署Ollama
|
||
|
||
#### 1.官方脚本安装
|
||
|
||
注意:服务器需要可以访问github等外网
|
||
|
||

|
||
|
||
```shell
|
||
curl -fsSL https://ollama.com/install.sh | sh
|
||
```
|
||
|
||
#### 2.二进制安装
|
||
|
||
参考网址:https://github.com/ollama/ollama/blob/main/docs/linux.md
|
||
|
||
获取二进制安装包
|
||
|
||
```shell
|
||
curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
|
||
```
|
||
|
||
解压及安装
|
||
|
||
```shell
|
||
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
|
||
```
|
||
|
||
创建管理用户和组
|
||
|
||
```shell
|
||
sudo useradd -r -s /bin/false -U -m -d /usr/share/ollama ollama
|
||
sudo usermod -a -G ollama $(whoami)
|
||
```
|
||
|
||
配置启动管理文件`/etc/systemd/system/ollama.service`
|
||
|
||
```shell
|
||
[Unit]
|
||
Description=Ollama Service
|
||
After=network-online.target
|
||
|
||
[Service]
|
||
ExecStart=/usr/bin/ollama serve
|
||
User=ollama
|
||
Group=ollama
|
||
Restart=always
|
||
RestartSec=3
|
||
Environment="PATH=$PATH"
|
||
|
||
[Install]
|
||
WantedBy=default.target
|
||
```
|
||
|
||
启动
|
||
|
||
```shell
|
||
sudo systemctl daemon-reload
|
||
sudo systemctl enable ollama
|
||
```
|
||
|
||
注意:如果手动启动直接执行以下命令
|
||
|
||
```shell
|
||
ollama serve
|
||
```
|
||
|
||

|
||
|
||
#### 3.容器安装
|
||
|
||
CPU Only:
|
||
|
||
```shell
|
||
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||
```
|
||
|
||
GPU Install:
|
||
|
||
参考网址:https://github.com/ollama/ollama/blob/main/docs/docker.md
|
||
|
||
#### 4.Kubernetes安装
|
||
|
||
```yaml
|
||
apiVersion: apps/v1
|
||
kind: Deployment
|
||
metadata:
|
||
annotations: {}
|
||
labels:
|
||
k8s.kuboard.cn/layer: web
|
||
k8s.kuboard.cn/name: ollama
|
||
name: ollama
|
||
namespace: xingdian-ai
|
||
spec:
|
||
progressDeadlineSeconds: 600
|
||
replicas: 1
|
||
revisionHistoryLimit: 10
|
||
selector:
|
||
matchLabels:
|
||
k8s.kuboard.cn/layer: web
|
||
k8s.kuboard.cn/name: ollama
|
||
strategy:
|
||
rollingUpdate:
|
||
maxSurge: 25%
|
||
maxUnavailable: 25%
|
||
type: RollingUpdate
|
||
template:
|
||
metadata:
|
||
creationTimestamp: null
|
||
labels:
|
||
k8s.kuboard.cn/layer: web
|
||
k8s.kuboard.cn/name: ollama
|
||
spec:
|
||
containers:
|
||
- image: >-
|
||
swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/ollama/ollama:latest
|
||
imagePullPolicy: IfNotPresent
|
||
name: ollama
|
||
ports:
|
||
- containerPort: 11434
|
||
protocol: TCP
|
||
volumeMounts:
|
||
- mountPath: /root/.ollama
|
||
name: volume-28ipz
|
||
restartPolicy: Always
|
||
volumes:
|
||
- name: volume-28ipz
|
||
nfs:
|
||
path: /data/ollama
|
||
server: 10.9.12.250
|
||
|
||
---
|
||
apiVersion: v1
|
||
kind: Service
|
||
metadata:
|
||
annotations: {}
|
||
labels:
|
||
k8s.kuboard.cn/layer: web
|
||
k8s.kuboard.cn/name: ollama
|
||
name: ollama
|
||
namespace: xingdian-ai
|
||
spec:
|
||
clusterIP: 10.109.25.34
|
||
clusterIPs:
|
||
- 10.109.25.34
|
||
internalTrafficPolicy: Cluster
|
||
ipFamilies:
|
||
- IPv4
|
||
ipFamilyPolicy: SingleStack
|
||
ports:
|
||
- name: 3scykr
|
||
port: 11434
|
||
protocol: TCP
|
||
targetPort: 11434
|
||
selector:
|
||
k8s.kuboard.cn/layer: web
|
||
k8s.kuboard.cn/name: ollama
|
||
sessionAffinity: None
|
||
type: ClusterIP
|
||
```
|
||
|
||
#### 5.基本使用
|
||
|
||
```shell
|
||
[root@xingdian-ai ~]# ollama -h
|
||
Large language model runner
|
||
|
||
Usage:
|
||
ollama [flags]
|
||
ollama [command]
|
||
|
||
Available Commands:
|
||
serve Start ollama
|
||
create Create a model from a Modelfile
|
||
show Show information for a model
|
||
run Run a model
|
||
stop Stop a running model
|
||
pull Pull a model from a registry
|
||
push Push a model to a registry
|
||
list List models
|
||
ps List running models
|
||
cp Copy a model
|
||
rm Remove a model
|
||
help Help about any command
|
||
|
||
Flags:
|
||
-h, --help help for ollama
|
||
-v, --version Show version information
|
||
|
||
Use "ollama [command] --help" for more information about a command.
|
||
```
|
||
|
||
获取大语言模型
|
||
|
||
```shell
|
||
[root@xingdian-ai ~]# ollama pull gemma2:2b
|
||
```
|
||
|
||
注意:gemma是谷歌的大语言模型
|
||
|
||
查看已有的发语言模型
|
||
|
||
```shell
|
||
[root@xingdian-ai ~]# ollama list
|
||
```
|
||
|
||

|
||
|
||
删除大语言模型
|
||
|
||
```shell
|
||
[root@xingdian-ai ~]# ollama list qwen2:7b
|
||
```
|
||
|
||
运行大语言模型
|
||
|
||
```shell
|
||
[root@xingdian-ai ~]# ollama run qwen:0.5b
|
||
```
|
||
|
||

|
||
|
||
## 三:认识 Open-webui
|
||
|
||
#### 1.什么是Open-webui
|
||
|
||
Open-WebUI 常用于给用户提供一个图形界面,通过它,用户可以方便地与机器学习模型进行交互
|
||
|
||
#### 2.官方地址
|
||
|
||
官方地址:https://github.com/open-webui/open-webui
|
||
|
||
## 四:安装部署和使用
|
||
|
||
#### 1.容器安装方式
|
||
|
||
```shell
|
||
docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=https://example.com -e HF_ENDPOINT=https://hf-mirror.com -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
|
||
```
|
||
|
||
国内镜像地址:swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui:main
|
||
|
||
OLLAMA_BASE_URL:指定Ollama地址
|
||
|
||
由于国内网络无法直接访问 huggingface , 我们需要更改为国内能访问的域名 hf-mirror.com
|
||
|
||
```shell
|
||
报错:
|
||
OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like sentence-transformers/all-MiniLM-L6-v2 is not the path to a directory containing a file named config.json.
|
||
Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'.
|
||
No WEBUI_SECRET_KEY provided
|
||
```
|
||
|
||
解决方法: 使用镜像站 -e HF_ENDPOINT=https://hf-mirror.com
|
||
|
||
#### 2.kubernetes方式
|
||
|
||
```yaml
|
||
---
|
||
apiVersion: apps/v1
|
||
kind: Deployment
|
||
metadata:
|
||
labels:
|
||
k8s.kuboard.cn/layer: svc
|
||
k8s.kuboard.cn/name: ai
|
||
name: ai
|
||
namespace: xingdian-ai
|
||
spec:
|
||
progressDeadlineSeconds: 600
|
||
replicas: 1
|
||
revisionHistoryLimit: 10
|
||
selector:
|
||
matchLabels:
|
||
k8s.kuboard.cn/layer: svc
|
||
k8s.kuboard.cn/name: ai
|
||
strategy:
|
||
rollingUpdate:
|
||
maxSurge: 25%
|
||
maxUnavailable: 25%
|
||
type: RollingUpdate
|
||
template:
|
||
metadata:
|
||
labels:
|
||
k8s.kuboard.cn/layer: svc
|
||
k8s.kuboard.cn/name: ai
|
||
spec:
|
||
containers:
|
||
- env:
|
||
- name: OLLAMA_BASE_URL
|
||
value: 'http://10.9.12.10:11434'
|
||
- name: HF_ENDPOINT
|
||
value: 'https://hf-mirror.com'
|
||
image: '10.9.12.201/ollama/open-webui:main'
|
||
imagePullPolicy: Always
|
||
name: ai
|
||
ports:
|
||
- containerPort: 8080
|
||
protocol: TCP
|
||
resources: {}
|
||
terminationMessagePath: /dev/termination-log
|
||
terminationMessagePolicy: File
|
||
restartPolicy: Always
|
||
terminationGracePeriodSeconds: 30
|
||
|
||
---
|
||
apiVersion: v1
|
||
kind: Service
|
||
metadata:
|
||
annotations: {}
|
||
labels:
|
||
k8s.kuboard.cn/layer: svc
|
||
k8s.kuboard.cn/name: ai
|
||
name: ai
|
||
namespace: xingdian-ai
|
||
spec:
|
||
clusterIP: 10.99.5.168
|
||
clusterIPs:
|
||
- 10.99.5.168
|
||
internalTrafficPolicy: Cluster
|
||
ipFamilies:
|
||
- IPv4
|
||
ipFamilyPolicy: SingleStack
|
||
ports:
|
||
- name: cnr2rn
|
||
port: 8080
|
||
protocol: TCP
|
||
targetPort: 8080
|
||
selector:
|
||
k8s.kuboard.cn/layer: svc
|
||
k8s.kuboard.cn/name: ai
|
||
sessionAffinity: None
|
||
type: ClusterIP
|
||
|
||
```
|
||
|
||
#### 3.使用kong ingress 进行引流
|
||
|
||
创建upstream svc地址为:xingdian-ai.ai.svc:8080
|
||
|
||
创建services
|
||
|
||
创建route
|
||
|
||
配置DNS解析
|
||
|
||
#### 4.浏览器访问
|
||
|
||

|
||
|
||

|
||
|
||
事先在ollama上获取大模型,我们一qwen:0.5b为例,其他的大模型占用资源较多
|
||
|
||

|
||
|
||

|
||
|